Cytomics in Pharmaceutical Research

Peter Van Osta

MAIA SCIENTIFIC

EWGCCA

Mol, Belgium

Thursday 23 September 2004
• **Cytomes** can be defined as cellular systems and subsystems and functional components of the body.

• **Cytomics** is the study of the heterogeneity of *cytomes* or more precisely the study of molecular single cell phenotypes resulting from genotype and exposure in combination with exhaustive bioinformatics knowledge extraction.

• The word Cytomics was first used in 2001 by:
 Davies E, Stankovic B, Azama K, Shibata K, Abe S.
 “Novel components of the plant cytoskeleton: A beginning to plant "cytomics"
About 15 years and $500 million to bring one drug to the market
43% of total time spent in pre-clinical research vs. 46% of time spent in clinical research
0.1% of molecules enter phase I and 0.02% of the original molecules finally reach the market
80% fallout in clinical trials
Which biological level of integration do we use in our drug discovery pipeline as a disease model with sufficient predictive power?
Drug Discovery
From Genome to Organism and Disease

Human $\geq 30,000$ genes
3,2000 Mb or 3.2 billion base pairs

Mouse $\geq 30,000$ genes
2,500 Mb

Drosophila $\geq 13,601$ genes
165 Mb

C. elegans $\geq 19,000$ genes
97 Mb

Complexity and differentiation of organisms is not only explained from the relative complexity of their genomes.
Drug Discovery
From Genes to Proteins to Pathways

From gene to 3D protein structure
From protein to a network of metabolic pathways

The complexity of interacting metabolic pathways is not only predicted from the gene or protein structure
Increasing the complexity of the biological level of integration, leads to a decrease in speed but an increase in information content.
Drug Discovery by Cytomics
Diseases - A Web of Interactions

Instead of concentrating on molecular targets within the relatively infinite network of highly redundant molecular pathways of cells, one can primarily focus on the end result, represented by molecular phenotypes of cells as a consequence of both genotype and environment.
Drug Discovery by Cytomics Technology

• High Content Screening:
 • High speed combined with multi-parametric analysis

• Advanced microscopy techniques:
 • LM, EM, Confocal and laser scanning microscopy, spectral imaging, FRET, SEM, TEM, digital microscopy, ...

• Flow Cytometry
 • Fast imaging in flow, ...

• Biomolecular analysis techniques:
 • Single-cell polymerase chain reaction (PCR), labeling of biomolecules by quantum dots, ...

• Bioinformatics:
 • Data exploration, statistics and data management, ...
Drug Discovery with Cytomics
High Content Screening

Flow Cytometry

Image Based Cytometry

Complementary technology
High Content Screening
Multidimensional Objects

Expression / Translocation

Blue channel (nuclei)
Green channel (ref)
Red channel (TF)
Pseudocolor overlay

Apoptosis

Intact nucleus
Intact membrane
Intact nucleus
Leaky membrane
Fragmented nucleus
Intact membrane
Fragmented nucleus
Leaky membrane

Courtesy of Anne-Marie Michon

Spatial, spectral and temporal dimensions lead to 5D
High Content Screening
From Object to Feature Hyperspace

A feature hyperspace for each individual object
High Content Screening
Differential Screening - High Density Data

Nuclear Expression Readout & data analysis of a 96 well array
Cell cycle effect
40x, 0.7 N.A. – intensified camera

Courtesy of Jannine Arts
Cytomics in Pharmaceutical Research
Standardization and Quality Control

• Standardization of experimental procedures
 • Instrument Set-Up and Calibration
 • Experimental protocols (reagents,...)
 • Data Exchange (XML, ...)
 • Data Analysis
 • Data presentation and visualization

• Quality Control
 • Standards
 • Cell types and cell lines
 • Calibration of size and density
 • QA procedures

• Organizations
 • EWGCCA
 • ATCC, ECCC
Cytomics in Pharmaceutical Research

Conclusion

• Cytomics improves the predictive power of drug discovery

• Cytomics allows for multi-parametric data analysis

• Further standardization and quality control is necessary
Acknowledgements

- Johan Geysen
- Bill Staffopoulos
- Luc Bols
- Bart Vanherck
- Kris Ver Donck
- Marc Moeremans
- Leen Geuens
- Bieke Govaerts
References

- A Human Cytome Project?
 P. Van Osta

- Cytomics - New Technologies Towards a Human Cytome Project
 G Valet, A Tárnok

- The Challenge of a Human Cytome Project
 G.Valet, R.F. Murphy, J.P. Robinson, A.Tárnok, A.Kriete
 Imaging and Microscopy CD, Volume 2, Purdue Univ. (2004)

- Cytomics in predictive medicine
 G Valet, A Tárnok
Hi,

I was wondering if there is already something going on to set up a sort of "Human Cytome Project"? In my opinion the hardware and most of the software seems to be available to set up such a project? For the cellular level, light-microscopy based reader technology would be very interesting to use?

Studying and mapping the genome, transcriptome and proteome at the organizational level of the cell for various cell types and organ models could provide us with a lot of information of what actually goes on in organisms in the spatio-spectro-temporal space?

I have been thinking (working) about a concept which could provide the basic framework for exploring and managing this cellular level of biological organization research on a large scale, but I would like to know if there is already some thought/work going on in the direction of setting up an initiative such as a "Human Cytome Project"?

This is just an idea, so I am really interested to hear if there is something in it, or even if it is not worth while what I just wrote.

Best regards,

Peter Van Osta.