

Non-NACO Houd, Brackery: Freedbard File: Freedbard File: Freedbard File: Freedbard File: Freedbard File: Freedbard File:	 Automatic handling of large tiled image mosaics from multiple wells/positions. Manages structured image storage and retrieval Simultaneous analysis of up to 5 related tiled mosaics, e.g. for multi-mode (multiple channels) fluorescence microscopy. Analysis routine as a plug-in module. Short development cycle Embedded in applications
---	--

Differential Geometry - Myelin Line detection on myelinated axon

myelin sheats.

Sample preparation: Toluidin blue stained, 1 µm Epon embedded sections

Scanning: 40x immersion oil, autofocus every 3 images

A line detector for dark ridges: $Lxx+Lyy-0.5*sqrt((Lxx-Lyy)^2+4Lxy^2) > 0$

Gaussian scale (σ) 1.5

Pictures: Janssen Research Foundation

Spatial Color Model - Blood Smear

Blood smear, Giemsa stain, 100x JPEG compression

 $\begin{array}{l} \text{RBC:} \ E_{\lambda} > 0, \ E_{\lambda} + E_{\lambda\lambda} > 0, \ \text{scale} \ (\sigma) \ 0.5 \\ \text{Leucocytes:} \ E_{\lambda} < 0, \ \text{scale} \ (\sigma) \ 12 \\ \text{Leucocyte nuclei:} \ E_{\lambda} < 0, \ E_{\lambda\lambda} > 0, \ \text{scale} \ (\sigma) \ 3 \end{array}$

References

- P. van Osta, J.M. Geusebroek, K. Ver Donck, L. Bols, J. Geysen, and B. M. ter Haar Romeny, The principles of scale space applied to structure and colour in light microscopy, Proc. R. Microsc. Soc., 37(3):161-166, 2002.
- J. M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and H. Geerts, Color invariance, IEEE Trans. Pattern Anal. Machine Intell., 23(12):1338-1350, 2001.
- J. M. Geusebroek, F. Cornelissen, A. W. M. Smeulders, and H. Geerts., Robust autofocusing in microscopy, Cytometry, 36(1):1-9, 2000.
- J.J. Koenderink, The structure of images, Biol. Cybern. 50, 363-370, 1984