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The focus of this article is to provide an overview of the
current technologies for the pharmaceutical and biotech
industry. Disease processes express themselves in the
functional and structural disturbance of cellular systems.
Cells and their metabolites constitute the building blocks
of tissues and entire organisms. Studying the spatial and
temporal phenotype of disease processes in tissues at the
cellular level reveals a multitude of information about the
progress and status of a disease. Detailed exploration of
tissues by slide-based cytometry is an important source of
information about disease processes. Technological and
analytical advances allow us to shed a new light on tissues

and to come to a better understanding of the complexity
of disease processes. Dealing with complex multidimen-
sional datasets from tissue samples requires an advanced
approach to image processing and data management. The
increase in computing power and the continuing research
into imaging algorithms allow us to improve the explora-
tion of the data content of tissues. © 2006 International Soci-
ety for Analytical Cytology
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Studying a disease process is possible at several levels of
biological integration, ranging from individual genes up to
the entire organism. Each level of biological integration will
reveal part of the entire dynamical and structural process
underlying a disease. An organism, however, exists by the
grace of its cells and, as such, all processes in health and
diseases have to express themselves through the structure
and function of cells and the tissues they contain.

Tissues and the microscopic exploration of biological
process at the level of tissue samples are already a long
and well-established source of information. Studying cells
in the context of a tissue allows for getting a detailed view
on how cells change in relation to the tissue they have
built and maintain.

In recent years we have witnessed an increase of our
understanding of biological process at the cellular and tis-
sue level. Advances in microscopical techniques and the
advent of digital microscopy allow for a shift from a quali-
tative to a quantitative and objective understanding of cel-
lular disease processes (1). This article aims at providing
an entry into quantitative content extraction from tissues
(cells), for the pharmaceutical and biotech industry.

IMAGING TECHNOLOGY

To study biological process in cells and tissues, we need
technologies to detect structures of interest (staining, con-
trast techniques) and imaging techniques to capture an
image of the sample in order to detect and quantify the bi-
ological process. Staining techniques allow us to distin-

guish structures and molecules of interest from their sur-
roundings. Slide-based cytometry allows for (re-)staining
multiple markers and exploring complex patterns of mo-
lecular phenotypes (2). Tissue samples can be studied
individually or organized in arrays to allow for the simulta-
neous study of multiple structural and functional expres-
sion patterns. Analyzing a large number of tissues for can-
didate gene expression is now greatly facilitated by using
tissue microarray (TMA) technology (3-5). Digital micros-
copy allows for correlating the patterns of gene expres-
sion to their spatial and temporal expression patterns in
tissues (0).

Laser scanning and wide-field microscopes allow for
studying molecular localization of proteins and their dy-
namics in cells and tissues in great detail (7-9). Confocal
and multiphoton microscopy allow for a detailed explora-
tion of cells in 3D and beyond (10). Multiphoton micros-
copy allows for exploring the deep structure of tissues
(11). Modern auto focus algorithms allow for fast and ro-
bust autofocusing (12).

The resolving power of optical microscopy beyond the
diffraction barrier is a new and interesting development,
which will lead to the so-called super-resolving fluores-
cence microscopy (13). New microscopy techniques,
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Fic. 1. Overview on the left and one individual image on the right. Toluidin blue stained rabbit heart tissue, Epon 2 p semithin slice taken at X63 (1.4 N.A.)
consisting of 1,300 individual 512 X 512 pixel tiled images, taken with an automatic tissue-edge detection system.

such as standing wave microscopy, 4Pi confocal micros-
copy, M, and structured illumination, are breaking the
diffraction barrier and allow for improving the resolving
power of optical microscopy (14,15). We are now heading
toward fluorescence nanoscopy, which will improve spa-
tial resolution far below the physical diffraction limits of
150 nm in the focal plane (XY) and 500 nm along the opti-
cal axis (Z) (16,17).

The high-order and the complex structural and func-
tional organization of cell and tissues require capturing
the multiparametric molecular morphology of its consti-
tuting components, such as the nucleus and other organ-
elles (18,19).

The analogue image created by the microscope is con-
verted by appropriate sampling into a digital representa-
tion, which is accessible to image detection and quantifi-
cation techniques (20-22). The digitizing device either
captures a broad part of the (visible) light, such as with a
single-CCD camera or a multispectral image by using an
array of detectors, a 3CCD color camera, or more channels
for spectral imaging (23,24).

CREATING A DIGITAL REPRESENTATION

Let us take a more overall look at the process, to create
a digital representation of cells and more particular tissues
(Fig. 1). A tissue sample represents a continuum of biolog-
ical information, which we convert into a digitized presen-
tation for quantification. In order to quantify the physical
properties of space and time of a tissue sample, we must
be able to create an appropriate digital representation of
these physical properties in-silico. This digital representa-
tion is then accessible to algorithms for content extrac-
tion. The content or objects of interest are then to be pre-
sented to a quantification engine that associates physical
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meaningful properties or features to the extracted objects
(25). Finally, these features are analyzed to find structural
and functional clusters, trends, periodicities, associations,
and correlations.

Each imaging device enables us to create an image of a
sample at a range on one side limited by its inner resolution
XYZ, spectral, temporal) and on the other side by its outer
resolution (XYZ, spectral). Each spot captured by the ima-
ging device represents a finite aperture of the imaging
instrument in space (XYZ), spectrum (A, wavelength) and
time (#). The profile and extent of this single spot varies
extensively, depending on the physical properties and capa-
city of the imaging device as such. Every image represents
a cuboid extraction of the original sample put on or in the
imaging device and represents five dimensions (XYZ, spec-
tral, time). A traditional 2D image represents an optical
depth defined by the optical characteristics of the micro-
scope (N.A. of the objective) and, as such, constitutes the
single slice version of a 3D image at its z-axis. A single 3D
image exists for a stack of 2D slices, taken with ideally an
equally spaced sampling in all planes, which is in reality
not the case. The optical characteristics, such as the point-
spread-function of the optics, distort the isospatial model of
the sample. Each inner image element or voxel represents
a sample point, while the outer extent of the 3D image
represents a physical volume within the sample.

The use of electromagnetic waves and their interaction
with the sample allow for the spectral and spatial resolu-
tion of the organization of the sample. The interaction and
diffraction of the electromagnetic waves by the sample
allow us to create an image of its spatial details and at a
certain spectral distribution. Optical microscopy is only
one way of using electromagnetic energy to interact with
a specimen, to explore its inner structure.
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The numerical representation of the created images in
the memory of the computer is only a representation of
the spatial, temporal, and spectral layout. The physical
dimensions of each data point are only important when
we want to back-propagate onto the physical extent of
the sample afterward. In general, the size of the structures
we explore by using digital microscopy, range from micro-
meters to millimeters in space (XYZ), the nanometer
range in optical wavelength (), and milliseconds to sev-
eral hours in time (¢).

Each point represented by a number meaning intensity,
spectrally distributed over the electromagnetic range cap-
tured by the optics and digitizing equipment. In conven-
tional digital microscopy, the spectral characteristics of
each physical point are represented by just one or three
numbers (RGB), as such representing a wide spectral
range, but there is no physical limitation on the spectral
sampling. Software should be capable to deal with a wide
range of data types and process them én-silico (26). A de-
vice attached to the software core should inform the sys-
tem about its capacity to explore the spatial, spectral, and
temporal range of a sample.

DEALING WITH IMAGE DATA

In order to be able to store and retrieve the image data
and to analyze them, we need algorithms and software
libraries capable, with a wide range of image content lay-
outs. The data for a computer are only a pointer to a mem-
ory address, with additional information about the size of
the unit data (byte, integer, float, etc.) and the layout of
the pattern of the data matrix (intensity, RGB, etc.). The
core of a system for large-scale image processing only
needs to deal with the size, type, and layout of the data, in
order to transfer them to the appropriate software compo-
nent, for object detection, quantification, and data analysis.

Most software libraries provide special solutions for a
specific range of image data and do not allow for an easy
exchange of image content, unless the data are continu-
ously reformatted.

Several solutions for image data storage and retrieval are
available. The image cytometry standard file format (ICS,
v. 1 and 2), allows for a flexible approach to storing and
retrieving multidimensional image data (27). The open mi-
croscopy environment has the goal to provide a flexible
data model, a relational database, and an XML-encoded file
standard to allow for the exchange of data (28).

As the high dimensional datasets created by a digital
imaging device can become extremely large and surpass
the capacity of a single computer, solutions for a flexible
increase of the computing capacity are necessary. The
necessary increase of computing power requires both a
solution at the level of computation as well as an increase
in the processing capacity (29,30). For the exchange of
digital data in a distributed computing environment
(DCE), several solutions are available, such as the DCE,
common object request broker architecture, .NET, simple
object access protocol, etc. (31-34). Depending on the
scale and the range of images generated, these tools

should allow us to manage the dataflow throughout a
scaleable image processing system.

OBJECT DETECTION

The extraction of content from the digital image of the
tissue slice requires the application of some form of object
detection. The digital sampling requires paying attention
to the quantitative presentation of analogue shapes into
their digital counterpart (35,36). Algorithms based on the
principle of geometric diffusion allow for the detection of
objects, which is related to that of the human visual sys-
tem (37-39). The same principles can be applied to the
detection of color, by using a color model, which takes
into account the spatial organization of colors in an image
(40). Improvements and new developments of digital ima-
ging algorithms will enable us to increase the potential for
quantitative analysis of tissue samples (41,42).

DATA QUANTIFICATION

The next step in an automated image analysis system
for tissue analysis is the quantification of the features of
the detected objects or of entire images. Both object-
related quantification and global-image quantification
allows for analyzing either specific or global characteris-
tics of the tissue-image. The size and dimensionality of the
created high-dimensional feature space necessitates the
development of new feature-extraction approaches.

DATA PATTERN ANALYSIS

Finding biologically relevant patterns in the tissue data
is the final step to come to an understanding of the in vivo
process. Statistical or nonstatistical methods or both are
being used to find clusters, trends, periodicities, associa-
tions, and correlations between and within samples. From
data quantification to image, understanding is still a chal-
lenging step for which several approaches are being
explored, depending on the underlying sample and ex-
periment (43-45). Both statistical and nonstatistical
approaches to data analysis are being used (46). Data
mining of high dimensional data sets is still a challenging
endeavor (47,48).

CONCLUSION

In recent years, we have seen an enormous increase in
the usage and potential of digital microscopy techniques
for analysis tissue samples. Developments in (digital) mi-
croscopy, image processing, and analysis allow us to shed
a new light on the biological process in tissue. Feature
extraction and data analysis methods are being developed
to handle the increase in large multidimensional datasets.
However, the management of the data flow and the analy-
sis of large volumes of images and digital data will require
a dramatic increase in the capacity of our digital imaging
systems.

For the technology to be applicable for industrial R&D,
it is not enough to automate the imaging process as such,
but the entire chain of image capturing and content
extraction up to knowledge extraction needs to be auto-
mated and integrated into the R&D process.
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